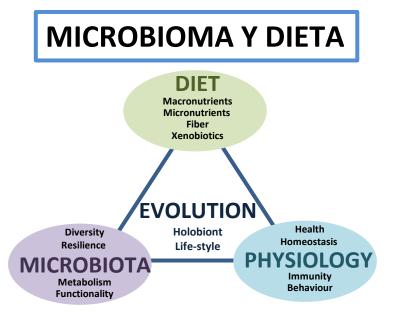
II CURSO AVANZADO SOBRE INMUNONUTRICIÓN

INTERNATIONAL SOCIETY FOR IMMUNONUTRITION

PREBIÓTICOS Y SU IMPACTO EN LA MICROBIOTA INTESTINAL


Teresa Requena

t.requena@csic.es

Instituto de Investigación en Ciencias de la Alimentación CIAL

Requena et al. 2018 Food Funct 9:688 Diet and microbiota linked in health and disease

La disponibilidad de nutrientes es el principal regulador de la composición microbiana y su metabolismo

Nutrientes que alcanzan el colon

Alrededor de 17% **Proteína** (4-10 g/d) *Clostridium, Bacteroides, Proteobacteria* y *Lactobacillus*

Grasa (5%) Bacteroides, Turicibacter, Alistipes and Bilophila

Carbohidratos no digeribles (15-30 g/d): "microbiota-accessible carbohydrates (MAC)"

SCIENTIFIC OPINION

Scientific Opinion on Dietary Reference Values for carbohydrates and dietary fibre¹

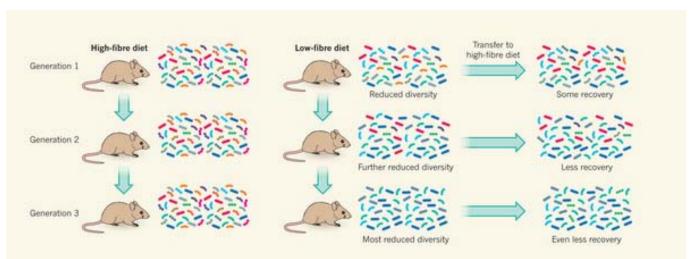
CARBOHIDRATOS FIBRA

Categorías nutricionales. Recomendaciones

Carbohidratos glicémicos (amiláceos), son digeridos y absorbidos en el intestino delgado.

Monosacáridos (glucosa, fructosa), disacáridos (sacarosa, lactosa), malto-oligosacáridos y almidón.

Ingesta recomendada diaria de 45-60% del total de energía ingerida.


Fibra dietética (carbohidratos no digeribles), alcanzan el colon intactos.

Fibra insoluble (celulosa, hemicelulosa, lignina) y **Fibra soluble** (oligosacáridos con GP>3, pectinas, almidón resistente, glucanos, mucílagos) [diferenciación metodológica y no predice efectos fisiológicos; recomendación de términos a extinguir FAO/WHO 1998].

Ingesta recomendada diaria de 25 g, adecuada para deposiciones normales en adultos sanos y basada en su papel de funcionalidad intestinal.

Diet-induced extinctions in the gut microbiota compound over generations

Erica D. Sonnenburg¹*, Samuel A. Smits¹*, Mikhail Tikhonov^{2,3}, Steven K. Higginbottom¹, Ned S. Wingreen^{4,5} & Justin L. Sonnenburg¹

Una dieta baja en fibra reduce la **diversidad** de especies en la **microbiota intestinal** que puede recuperarse en una primera generación al pasar a una dieta alta en fibra. La pérdida de la diversidad empeora en cada generación posterior al mantener una dieta baja en fibra, y también el grado de recuperación al aumentar la fibra en la dieta. Cambios que implican la extinción de algunas especies microbianas.

PREBIOTICOS

"Factor bifidus"

1950s: "componente de la leche humana que aumenta las bifidobacterias del lactante"

"Prebiótico"

Gibson & Roberfroid (1995) J. Nutr. 1995 125:1401

"Ingrediente alimentario **no digestible** que ejerce un efecto beneficioso para la salud al estimular **selectivamente** el crecimiento y/o la actividad de un determinado número de bacterias en el **colon** y así mejora la salud del hospedador"

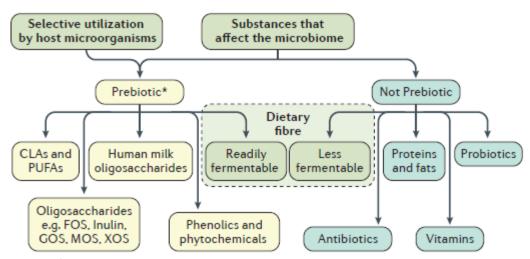
The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics

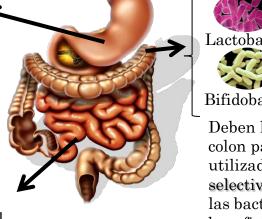
Glenn R. Gibson¹, Robert Hutkins², Mary Ellen Sanders³, Susan L. Prescott⁴, Raylene A. Reimer⁵, Seppo J. Salminen⁶, Karen Scott⁷, Catherine Stanton⁸, Kelly S. Swanson⁹, Patrice D. Cani¹⁰, Kristin Verbeke¹¹ and Gregor Reid¹²

NATURE REVIEWS | GASTROENTEROLOGY & HEPATOLOGY

VOLUME 14 | AUGUST 2017 | 491

Sustrato que es utilizado selectivamente por los microorganismos del hospedador confiriendo un beneficio para la salud

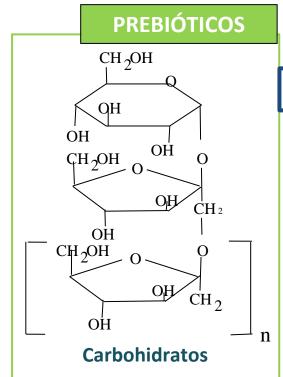



Figure 1 | Distinguishing what is considered a prebiotic with the proposed definition. Prebiotics must be selectively utilized and have adequate evidence of health benefit for the target host. Dietary prebiotics must not be degraded by the target host enzymes. *The figure shows candidate as well as accepted prebiotics in that levels of evidence currently vary, with FOS and GOS being the most researched prebiotics.CLA, conjugated linoleic acid; PUFA, polyunsaturated fatty acid; FOS, fructooligosaccharides; GOS, galactooligosaccharides; MOS, mannanoligosaccharide; XOS, xylooligosaccharide.

A. Katsnelson: Prebiotics gain prominence but remain poorly defined. PNAS (2016) 113:14169

Estables a los ácidos del estómago.

No deben absorberse en el intestino delgado.


Lactobacilos

Bifidobacterias

Deben llegar al colon para ser utilizados selectivamente por las bacterias beneficiosas.

Requisitos **Prebióticos**

- i) No ser hidrolizado o absorbido en el tracto gastrointestinal superior (esófago, estómago y duodeno). Debe ser resistente a la acidez gástrica, a la hidrólisis por enzimas digestivas y no absorberse en el intestino delgado
- ii) Ser metabolizado selectivamente por bacterias beneficiosas de la microbiota intestinal (modulación de microbiota)
- inducir efectos iii) Ser de fisiológicos capaz beneficiosos para la salud (locales y/o sistémicos)

CARBOHIDRATOS

(metabolismo microbiano sacarolítico)

Genoma humano: 17 glicosil hidrolasas

Microbioma intestinal: 60.000 enzimas

Di- y trisacáridos: lactulosa, lactitol, lactosacarosa, etc.

Oligosacáridos: Grado de polimerización (GP) entre 3 y 10 unidades de fructosa, galactosa, etc.

Polisacáridos: inulina, almidón resistente, etc.

CARBOHIDRATOS PREBIÓTICOS

- Origen natural

(extracción, hidrólisis) FOS, ALMIDÓN

Frutas, verduras, hortalizas

Legumbres y cereales

Almidón no digerible

Inulina

(achicoria, cebolla, espárrago, trigo)

(legumbres)

Rafinosa

(soja, miel)

Miel

Leche materna:

- humana
- otros mamíferos

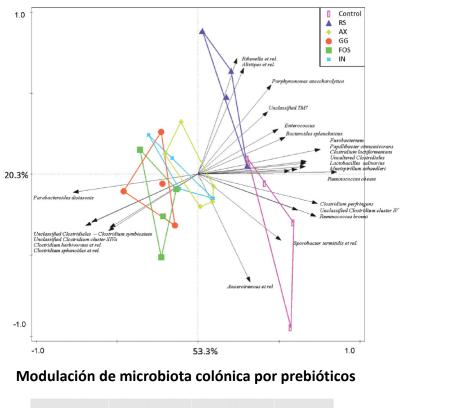
Oligosacáridos complejos

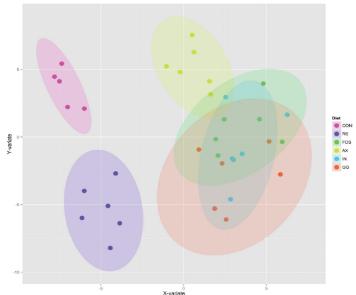
(leche)

- Síntesis enzimática

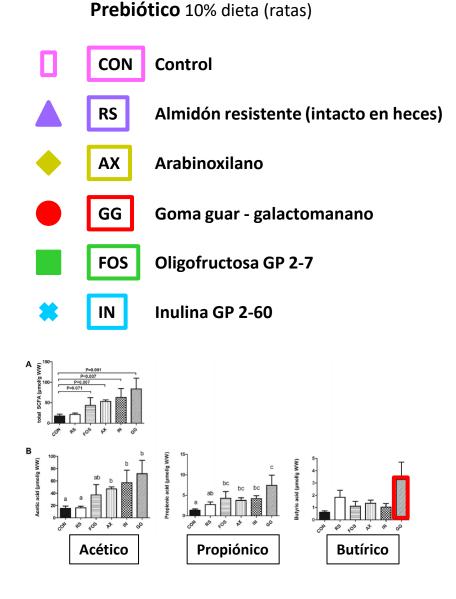
(isomerización, transglicosilación) LACTULOSA, GOS

BENEFICIOS EN SALUD DE PREBIÓTICOS


- Modulación de la microbiota intestinal
- Mejora del tránsito intestinal
- Mejora del metabolismo energético
- Pediatría



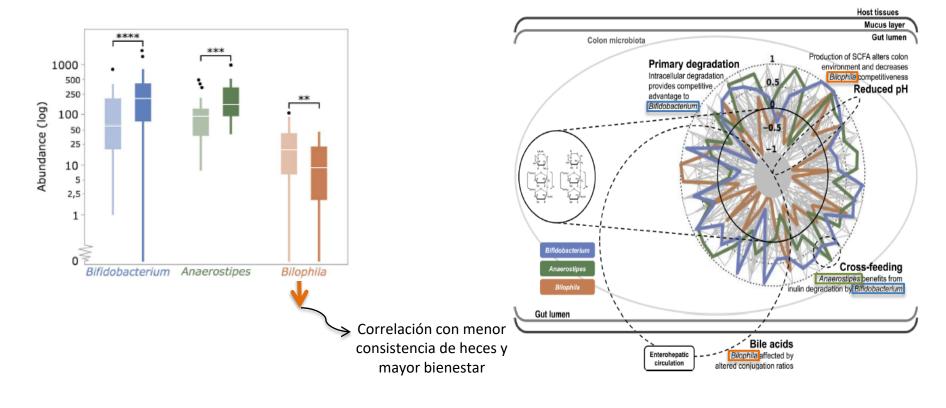
BENEFICIOS EN SALUD DE PREBIÓTICOS


- Modulación de la microbiota intestinal
- Mejora del tránsito intestinal
- Mejora del metabolismo energético
- Pediatría

Expresión génica de células epiteliales colónicas

Clostridium clusters IV y XIVa asociados al consumo de prebióticos, la formación de SCFA y la expresión en la mucosa intestinal de genes relacionados con procesos de generación de energía

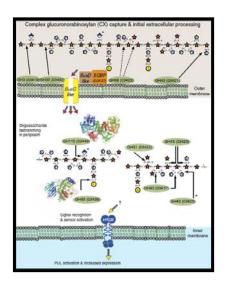
Lange et al. (2015) Mol Nutr Food Res 59:1590


Prebiotic inulin-type fructans induce specific changes in the human gut microbiota

Doris Vandeputte, 1,2,3 Gwen Falony, 1,2 Sara Vieira-Silva, 1,2 Jun Wang, 1,2 Manuela Sailer, 4 Stephan Theis, 4 Kristin Verbeke, 5 Jeroen Raes 1,2,3

To cite: Vandeputte D, Falony G, Vieira-Silva S, et al. Gut 2017;66:1968–1974.

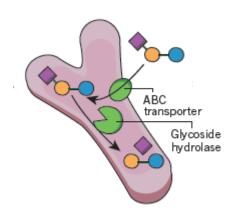
Estudio de intervención aleatorizado, doble-ciego, controlado por placebo (maltodrextrina) y cruzado en individuos con estreñimiento


Mecanismos of acción - prebióticos - microbiota intestinal

Generalistas

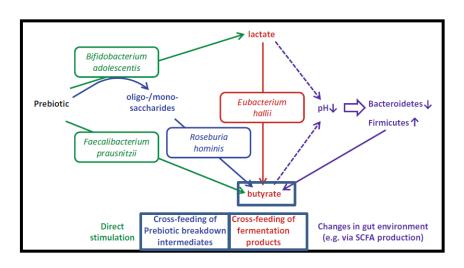
Bacteroides

Promedio de 137 Glycosidasas por genoma (*Polysaccharide Utilization Loci*)


Propionato

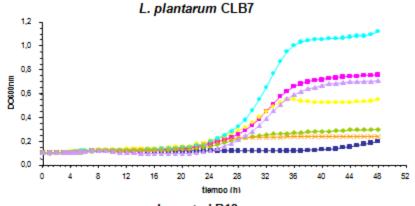
Bifidobacterium

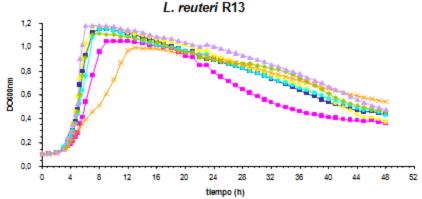
Genomas con elevada predicción de proteínas para el metabolismo de carbohidratos (ABC-transporters)


Lactato/Acetato

Especialistas

Butirato formación en respuesta al consumo de prebióticos


Cross-feeding



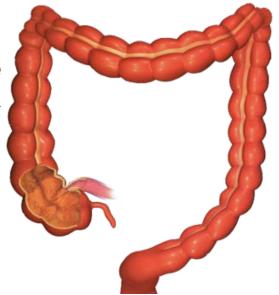
Prebióticos de fermentación selectiva

Oligosacáridos derivados de la lactulosa (OsLu)

- 6'-galactosil lactulosa
- 1, 1'-galactosil lactulosa
- 4'-galactosil lactulosa

Prebióticos de fermentación lenta

Colon Tranverso


ralentización de la fermentación = descenso de sustratos disponibles

Colon Ascendente

fermentation muy activa

oligosacáridos

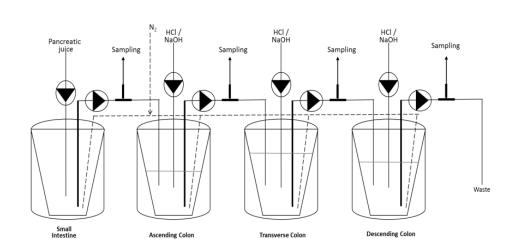
Colon Descendente

fermentation baja de carbohidratos y alta de proteínas

amoniaco

poliaminas

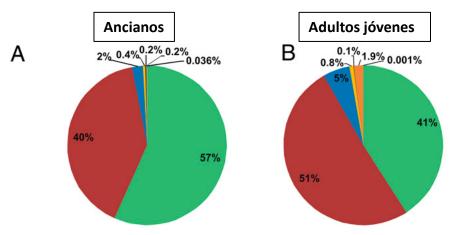
Nuevos prebióticos capaces de modular la microbiota de **regiones colónicas distales**, dominadas por metabolismo proteolítico


но он он он

lactulosa

β-galactosidasa transgalactosilación Oligosacáridos derivados de Lactulosa: OsLu

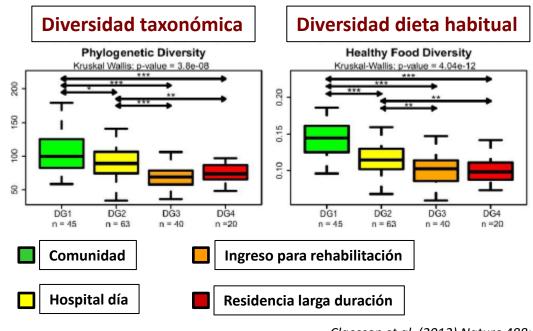
Sustitución de carbohidratos de la dieta fácilmente fermentables (almidón soluble, fructosa) por **OsLu**

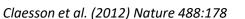

La presencia de **OsLu** mantiene la producción neta de ácido butírico por la microbiota colónica y evita la completa transición a perfiles de metabolismo proteolítico

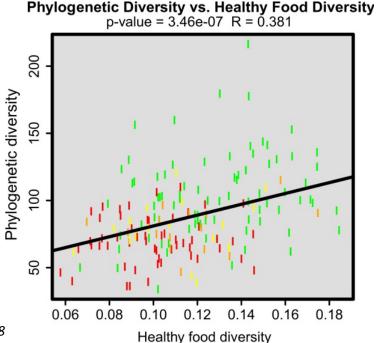
Prebióticos de fermentación lenta

Compound		HE	LE OsLu	LE
Total SCFA	AC	88.24 ± 2.53	59.17 ± 12.36	36.54 ± 0.74
	TC	110.04 ± 14.50	94.30 ± 16.12	50.89 ± 1.36
	DC	120.35 ± 2.50	86.88 ± 0.21	54.80 ± 0.21
Butyric acid	AC	21.39 ± 0.43	13.58 ± 4.29	0.05 ± 0.08
	TC	27.53 ± 4.24	22.28 ± 3.63	3.36 ± 0.13
1	DC	25.34 ± 0.43	16.38 ± 0.77	3.34 ± 0.62
Ammonium	AC	4.05 ± 1.19	7.07 ± 3.09	22.39 ± 4.97
	TC	34.80 ± 15.79	50.61 ± 6.44	50.44 ± 6.99
	DC	55.68 ± 19.23	67.50 ± 5.15	63.10 ± 2.47
		CAN CO	27	VICE OF

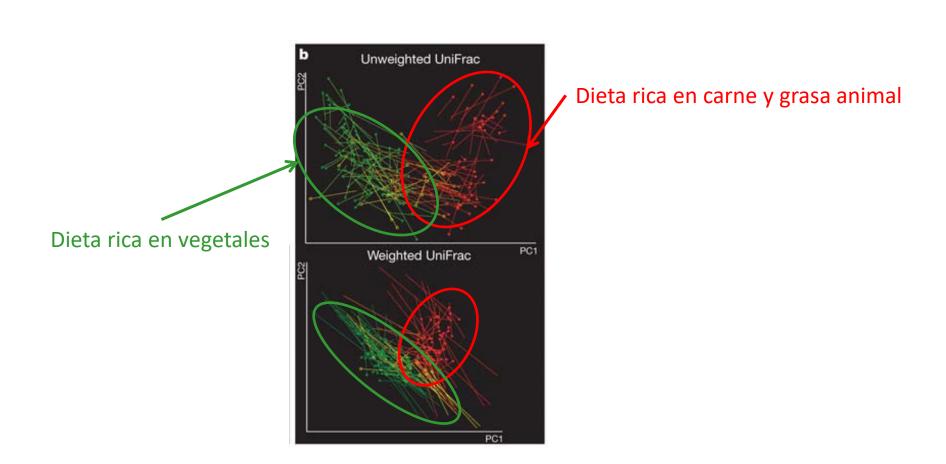
Microbiota Intestinal y Envejecimiento

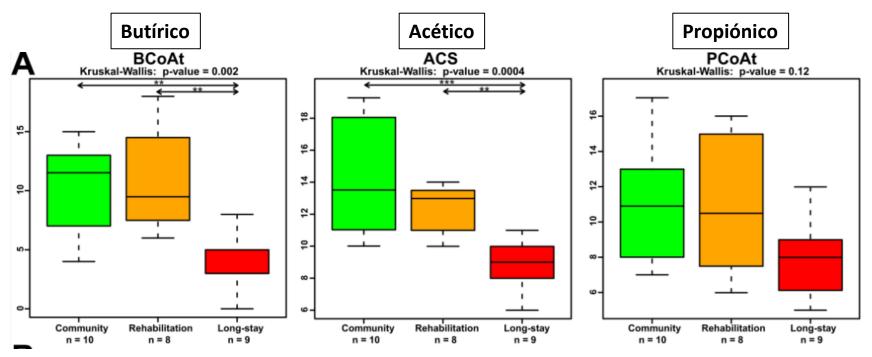

■Bacteroidetes■Firmicutes■Proteobacteria■Actinobacteria■Verrucomicrobia■Lentisphaerae■Fusobacteria


Reducida diversidad microbiana


Descenso significativo de *Bifidobacterium*, *Lactobacillus*, *Clostridium* XIVa y IV (butírico)

Aumento de **Proteobacteria**, **Enterobacteriaceae**, clostridios, (patobiones): incremento **Clostridium difficile** (antibióticos)


Claesson et al. (2011) PNAS 108:4586



Agrupamiento de la Microbiota que muestra la influencia de la dieta en ancianos que residen en su domicilio (Comunidad)

Microbiota Intestinal, Fibra, Envejecimiento Funcionalidad (SCFA)

Claesson et al. (2012) Nature 488:178

- Correlación positiva significativa entre diversidad microbiana, dieta variada y con fibra, formación de SCFA y menores indicadores de fragilidad y marcadores de inflamación
- Modulación microbiológica mediante intervención dietética → envejecimiento saludable

BENEFICIOS EN SALUD DE PREBIÓTICOS

- Modulación de la microbiota intestinal
- Mejora del tránsito intestinal
- Mejora del metabolismo energético
- **Pediatría**

Guía Práctica de la Organización Mundial de Gastroenterología: probióticos y prebióticos. Febrero 2017

Table 7 Oxford Centre for Evidence-Based Medicine levels of evidence for treatment benefits relative to the question "Does this intervention help?"

Evidence level	Study type
1*	Systematic review of randomized trials or <i>n</i> -of-1 trials
2*	Randomized trial or observational study with dramatic effect
3*	Nonrandomized controlled cohort / follow-up study †
4*	Case-series, case-control studies, or historically controlled studies †
5	Mechanism-based reasoning

LACTULOSA

Indicaciones **ADULTOS** de prebióticos en encefalopatía hepática

Liver disease					
Hepatic encephalopathy	Nonabsorbable disaccharides (lactulose)	45-90 g/daily	1	[29]	-

Indicaciones ADULTOS de prebióticos en estreñimiento

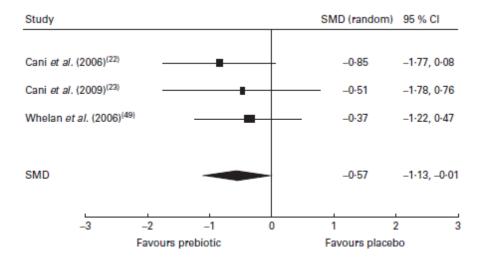
Functional constipation					
	Lactulose	20-40 g/d	2	[58]	-
	Oligofructose	20 g/d	3	[59]	-
	Fructo-oligosaccharide (FOS) and Lactobacillus paracasei (Lpc- 37), L. rhamnosus (HN001), L. acidophilus (NCFM) and Bifidobacterium lactis (HN019)	6 g (FOS) + 10 ⁸ –10 ⁹ CFU once daily	3	[60]	-

SCIENTIFIC OPINION

Scientific Opinion on the substantiation of a health claim related to "native chicory inulin" and maintenance of normal defecation by increasing stool frequency pursuant to Article 13.5 of Regulation (EC) No 1924/2006¹

EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA)^{2, 3}

"Chicory inulin contributes to maintenance of normal defecation by increasing stool frequency". In order to obtain the claimed effect, 12 g of "native chicory inulin" should be consumed daily.


(general population)

BENEFICIOS EN SALUD DE PREBIÓTICOS

- Modulación de la microbiota intestinal
- Mejora del tránsito intestinal
- Mejora del metabolismo energético
- Pediatría

Prebióticos y metabolismo energético

Prebióticos y saciedad. FOS

Prebiotic supplementation improves appetite control in children with overweight and obesity: a randomized controlled trial 1-3

Megan P Hume, Alissa C Nicolucci, and Raylene A Reimer 4,5 *

⁴Faculty of Kinesiology and ⁵Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada

AJCN. First published ahead of print February 22, 2017 as doi: 10.3945/ajcn.116.140947

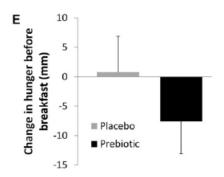
Baseline characteristics of participants according to treatment group¹

	Prebiotic group	Placebo group	P
Participants (F/M), n/n	10/12	8/12	0.72
Age, y	10.4 ± 1.6	10.2 ± 1.6	0.72
Height, cm	148.1 ± 2.4	147.1 ± 2.8	0.78
Body weight, kg	58.5 ± 3.1	59.6 ± 4.5	0.84
BMI z score	2.03 ± 0.07	2.04 ± 0.10	0.94

8 g / día 16 semanas

Placebo (maltodextrina) 3,3 g / día (isocalórico)

Desayuno buffet ad libitum (tiempo 0 y 16 semanas)



Change in prospective before breakfast (mm) 15 food consumption 10

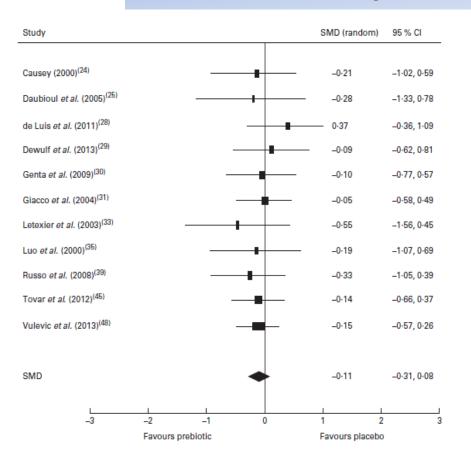
■ Placebo

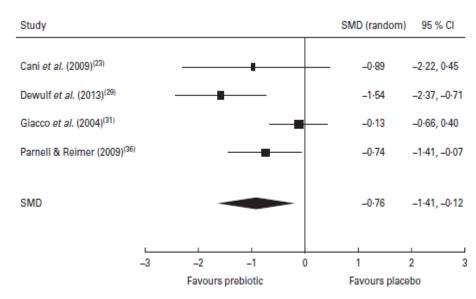
■ Prebiotic

-15

Mejora significativa de la sensación de menor apetito y reducción del consumo energético

Gastroenterology 2017;153:711–722


Prebiotic Reduces Body Fat and Alters Intestinal Microbiota in Children With Overweight or Obesity


Alissa C. Nicolucci, Megan P. Hume, Inés Martínez, Shyamchand Mayengbam, Jens Walter, Raylene A. Reimer

- Descenso significativo: peso corporal, porcentaje de grasa corporal y del tronco, y de triglicéridos séricos
- Aumento significativo de Bifidobacterium

Prebióticos y metabolismo energético

Prebióticos y triglicéridos. FOS, inulina

Prebióticos y glucemia. FOS

SCIENTIFIC OPINION

Scientific Opinion on the substantiation of a health claim related to non-digestible carbohydrates and a reduction of post-prandial glycaemic responses pursuant to Article 13(5) of Regulation (EC) No 1924/2006¹

EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA)^{2,3}

Health claim related to fructo-oligosaccharides (FOS) from inulin and a reduction of post-prandial glycaemic responses. Non-digestible carbohydrates including FOS are resistant to hydrolysis and absorption in the small intestine and do not contribute to post-prandial glycaemia.

Opinion of non-digestible carbohydrates (e.g. non-starch polysaccharides, resistant oligosaccharides and resistant starch) which should replace sugars in foods or beverages in order to obtain the claimed effect.

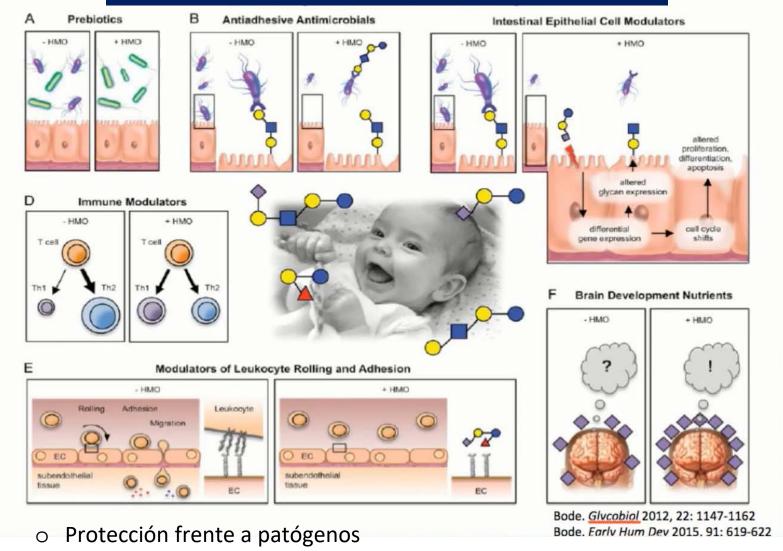
Alimentos / bebidas que contienen carbohidratos no digeribles en lugar de azúcar (al menos sustitución del 20%) pueden declarar una **reducción de la respuesta glicémica posprandial** (población general)

BENEFICIOS EN SALUD DE PREBIÓTICOS

- Modulación de la microbiota intestinal
- Mejora del tránsito intestinal
- Mejora del metabolismo energético
- Pediatría

OLIGOSACÁRIDOS DE LECHE HUMANA (HMO)

Leche humana: lactosa (55-70 g/L); HMO (12-14 g/L)



1000 compuestos (caracterizados más de 200; totalmente identificados 80, elevada diversidad estructural)

Estructura

	Monómeros	Enlaces	Degradación en tracto GI superior
НМО	Glucosa Galactosa N-acetil-neuroamínico N-acetil-glucosamina Fucosa	variable	NO

OLIGOSACÁRIDOS DE LECHE HUMANA

- Estimulation del sistema immune mucosal y sistémico
- Desarrollo y maduración intestinal y cerebral
- > PREBIOTICOS

Prebióticos en Pediatría

Fórmulas lácteas infantiles

- Síntesis y/o enriquecimiento moléculas análogas a HMO. 2'-Fucosil lactosa
- FOS y GOS (1:9; 0,8 g/100 mL): efecto bifidogénico, aumento de SCFA
- Absorción de minerales (crecimiento y salud ósea)
- Combinación con probióticos